The Solar System
By: Steven Olin

| 
 Planet Name  | 
 Mass (kg)  | 
 Radius of Planet (m)  | 
 Distance From Sun (m)  | 
 Weight of 60kg man (N)  | 
 Acc. due to Gravity (m/s2)  | 
 Time for object to fall 100m (sec.)  | 
 Period of Planet’s Rotation (years)  | 
| 
 Gemelas  | 
 2.2 x 1025  | 
 9.1 x 106  | 
 5.1 x 1010  | 
 1060  | 
 17.7  | 
 3.4  | 
 0.20  | 
| 
 Thalassa  | 
 6.8 x 1025  | 
 1.1 x 107  | 
 5.7 x 1010  | 
 2250  | 
 37.5  | 
 2.3  | 
 0.23  | 
| 
 Theta  | 
 3.1 x 1024  | 
 3.6 x 107  | 
 1.1 x 1011  | 
 9.57  | 
 0.160  | 
 35.4  | 
 0.63  | 
| 
 Kujo  | 
 5.8 x 1026  | 
 6.0 x 107  | 
 8.8 x 1011  | 
 645  | 
 10.8  | 
 4.3  | 
 14.2  | 
| 
 Bwethy  | 
 9.1 x 1024  | 
 5.6 x 106  | 
 4.7 x 1012  | 
 1160  | 
 19.3  | 
 3.2  | 
 175.4  | 
Sample Calculations:
Determining wieght of a 60 kg man on planet’s surface:
Fg = G x m1m2 6.67 x 10-11 x (60 kg x 2.2 x 1025kg) = 1060N
d2 (9.1 x 106m)2
Determining the acceleration due to gravitation:
Fg = Acceleration due to 1060 N = 17.7 m/s2
Weight Gravity 60 kg
Determining the time required for an object to fall 100 meters:
? t = ? ( 2? d/a) ? [( 2 x 100 m)/17.7 m/s2] = 3.4 sec.
Determining the time required to complete one orbit around the sun:
Ta = ? [{(Tb)2 x (ra)3)}/ (rb)3]
? [{(1 year)2 x (5.1 x 1010m)3}/( 1.5 x 1011m)3] = 0.20 years